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Abstract

With a suitably chosen set of spring–mass parameters, a single or multiple points of zero vibration
(or otherwise referred to as nodes) can be induced anywhere along a general elastic structure during forced
harmonic excitations. In application, however, the actual selection of the oscillator parameters also depends
on the tolerable vibration amplitudes of the absorber masses, because if the vibration amplitudes of these
masses are large, then theoretically feasible solutions could not be implemented in practice. In this paper,
spring–mass systems are used as a means to impose single or multiple nodes anywhere along a harmonically
forced structure, subjected to the constraints of tolerable vibration amplitudes for the masses. When the
node locations are chosen so that they are closely spaced, a region of nearly zero amplitudes can be induced,
effectively quenching vibration in that segment of the structure. Numerical experiments show that the
required mass and its vibration amplitude for each oscillator are inversely related. This observation serves
as a guide for the proper selection of the oscillator parameters in order to induce multiple nodes and to meet
the tolerable vibration amplitudes of the oscillator masses. An efficient procedure for choosing the required
oscillator parameters is outlined in detail, and numerical experiments are performed to verify the proposed
methodology of imposing nodes at multiple locations along any arbitrary structure during harmonic
excitations.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Spring–mass systems are frequently used as vibration absorbers to control and to minimize
excess vibration in structural systems [1–9]. In a recent paper [10], the present author used sprung
masses to impose the points of zero vibration for general elastic structures during forced harmonic
excitations. For convenience, such points are referred to as nodes. It was found that when the
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oscillator attachment locations and the node locations coincide (or collocated), it is always
possible to tune the spring–mass parameters such that their attachment locations can be made to
coincide exactly with the nodes of the structure, thereby allowing nodes to be imposed at multiple
locations anywhere along the combined assembly, for any excitation frequency. When the
oscillators and the node locations are not collocated, however, it is only possible to induce nodes
at certain locations along the elastic structure for a given driving frequency. Finally, to induce S

nodes along a structure for the non-collocated case, a set of S non-linear algebraic equations
needs to be solved.
In general, the selection of the sprung masses in order to induce nodes is not unique, and the

eventual choice is often dictated by the tolerable vibration amplitudes of the oscillator masses. If
the vibration amplitudes of these elastically mounted masses are excessively large, then an
arbitrarily chosen set of oscillator parameters may not be feasible to be implemented in
application. In Ref. [10], the maximum allowable absorber amplitudes were not considered in the
selection of spring–mass parameters, while in this paper, they will be specified as additional design
objectives, making the problem more challenging and practical. With the additional constraints,
the problem becomes substantially more complicated analytically, because the node locations and
the amplitude constraints lead to a total of 2S non-linear algebraic equations that must be
satisfied simultaneously. Numerically, the solution to these 2S equations is very computationally
intensive because the convergence is often very slow. To make the selection of the oscillator
parameters more efficient, a procedure is proposed that requires only the solution of S equations,
thereby reducing the number of equations that need to be solved by half and offering substantial
computational savings over the direct approach of solving a set of 2S non-linear algebraic
equations. Numerical experiments are performed to verify the utility of the proposed scheme of
imposing nodes at multiple locations during harmonic excitations, subjected to the constraints of
tolerable vibration amplitudes of the oscillator masses. The ability to enforce node locations has
practical benefits because it would allow sensitive instruments to be placed near or at points where
there are little or no vibration. In addition, the proposed scheme allows certain locations along the
structure to remain stationary without using any rigid supports.

2. Theory

2.1. Governing equations

Consider the system of Fig. 1, which consists of an arbitrarily supported elastic structure to
which S-sprung masses are attached. A localized harmonic force of forcing amplitude F and
excitation frequency o; f ðtÞ ¼ Fe jot; is applied to the structure at xf ; where j ¼

ffiffiffiffiffiffiffi
�1

p
: Utilizing

the assumed-modes method, the physical deflection of the structure at any point x is given by

wðx; tÞ ¼
XN

i¼1

fiðxÞZiðtÞ; ð1Þ

where the fiðxÞ are the eigenfunctions of the unloaded structure (the elastic structure without any
sprung masses) that form the trial functions for this approximate solution, the ZiðtÞ are the
corresponding generalized co-ordinates, and N is the number of modes used in the assumed-modes
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expansion. Formulating the total kinetic and potential energies of the combined system, applying
Lagrange’s equations, and assuming simple harmonic motion with the same response frequency as
the driving frequency, the following matrix equations are obtained [10]:

ð½K� � o2½M�Þ%
%
Zþ ½R�%

%
z ¼ Ffðxf Þ ð2Þ

and

½R�T %
%
Zþ ð½k� � o2½m�Þ%

%
z ¼

%
0; ð3Þ

where %
%
Z ¼ ½%Z1 %Z2y%ZN �T and %

%
z ¼ ½%z1 %z2y%zS�T: The N � N ½M� and ½K� matrices of Eq. (2) are

½M� ¼ ½Md �; ½K� ¼ ½Kd � þ
XS

i¼1

kifðxi
aÞf

Tðxi
aÞ; ð4Þ

where ½Md � and ½Kd � are diagonal matrices whose ith elements are Mi and Ki (the generalized
masses and stiffnesses of the elastic structure), vectors fðxi

aÞ and fðxf Þ consist of the
eigenfunctions of the elastic structure evaluated at xi

a and xf ; respectively,

fðxi
aÞ ¼ ½f1ðx

i
aÞ f2ðx

i
aÞyfNðx

i
aÞ�

T; fðxf Þ ¼ ½f1ðxf Þ f2ðxf ÞyfNðxf Þ�T; ð5Þ

and the N � S matrix ½R� is given by

½R� ¼ ½�k1fðx1
aÞ y � kifðxi

aÞ y � kSfðxS
a Þ�: ð6Þ

Note that ½M� is a diagonal matrix and ½K� is a diagonal matrix modified by S rank one matrices.
The S � S matrices ½m� and ½k� are both diagonal, whose ith elements are given by mi and ki (the
mass and spring stiffness of the ith oscillator). Eqs. (2) and (3) can be written in the compact form

½K� � o2½M� ½R�

½R�T ½k� � o2½m�

" #
%
%
Z

%
%
z

" #
¼

Ffðxf Þ

%
0

" #
ð7Þ
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Fig. 1. An arbitrarily supported elastic structure that is subjected to a localized harmonic excitation and carrying any

number of sprung masses.
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which consists of N þ S equations with N þ S unknowns in the generalized co-ordinates %
%
Z and the

oscillator displacements %
%
z:

Eq. (2) can be reduced in terms of %
%
Z only by simple algebraic manipulation. Using Eq. (3), the %zi

are found to be

%zi ¼
kif

Tðxi
aÞ

ki � o2mi

%
%
Z; i ¼ 1;y;S: ð8Þ

Substituting the expressions of Eq. (8) into Eq. (2), the following matrix equation, of size N � N;
is obtained:

½Kd � þ
XS

i¼1

sifðxi
aÞf

Tðxi
aÞ � o2½Md �

( )
%
%
Z ¼ Ffðxf Þ; ð9Þ

where

si ¼
kimio2

mio2 � ki

: ð10Þ

Finally, the natural frequencies of the modified structure correspond to the zeros of the
characteristic determinant of the coefficient matrix of %

%
Z of Eq. (9).

In application, the number of imposed nodes can be less than the number of sprung masses.
However, it is more efficient to use as few sprung masses as possible to impose the desired number
of nodes. Thus, in the subsequent analysis, only S sprung masses will be used to impose S nodes.
Now, to impose S nodes at any desired locations, xr

n; along the elastic structure requires that

wðxr
n; tÞ ¼

XN

i¼1

fiðx
r
nÞZiðtÞ ¼ fTðxr

nÞ
%
Z ¼ fTðxr

nÞ%
%
Z e jot ¼ 0; r ¼ 1;y;S: ð11Þ

Assuming that the excitation frequency does not coincide with any natural frequencies of the
modified system, the coefficient matrix of Eq. (9) can be inverted to give

%
%
Z ¼ ½Kd � þ

XS

i¼1

sifðxi
aÞf

Tðxi
aÞ � o2½Md �

( )�1

Ffðxf Þ ð12Þ

which allows Eq. (11), the constraint equations that dictate the location of nodes, to be rewritten
as

fTðxr
nÞ ½Kd � þ

XS

i¼1

sifðxi
aÞf

Tðxi
aÞ � o2½Md �

( )�1

Ffðxf Þ ¼ 0; r ¼ 1;y;S: ð13Þ

In practice, the selection of mi and ki is often governed by the maximum allowable vibration
amplitudes of the oscillator masses. From Eq. (3), the vector of mass amplitudes, of length S; is
given by

%
%
z ¼ �ð½k� � o2½m�Þ�1½R�T %

%
Z ð14Þ
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or alternatively,

%
%
z ¼ �ð½k� � o2½m�Þ�1½R�T ½Kd � þ

XS

i¼1

sifðxi
aÞf

Tðxi
aÞ � o2½Md �

( )�1

Ffðxf Þ: ð15Þ

Incidentally, Eq. (15) yields a closed form expression for %
%
z; which is convenient for analytical

manipulations. Numerically, %
%
z is evaluated instead by solving the matrix equation given by

Eq. (7), which can be used to determine %
%
z even when o2 ¼ kr=mr: Let the vector of tolerable

vibration amplitudes of the sprung masses be given z
%
z%
%
zmax; where z

%
z%
%
zmax is defined as z

%
z%
%
zmax ¼ j%

%
zj

(vertical bars denote the absolute value). Once the elastic structure and its boundary conditions
are specified, the attachment locations xi

a are given, and the excitation frequency o and the
excitation location xf are known, Eq. (13) and the amplitude constraints lead to a set of 2S
equations that must be solved simultaneously for the required 2S spring–mass parameters in order
to induce a single or multiple nodes at xr

n:
The MATLAB routine fsolve can be used to find the roots, the mi and the ki; that satisfy t

he aforementioned system of 2S non-linear algebraic equations. Numerically, fsolve requires
a set of initial guess of the unknown variables to be provided. For a set of initial guesses,
if fsolve does not converge to a solution, then fsolve is run again with a different set of starting
values until a solution is obtained. The proposed technique of solving for the mass and stiffness
parameters in order to impose nodes at xr

n; subjected to the mass amplitude constraints, is very
robust but highly computationally intensive. Later in the paper, an efficient procedure will be
proposed that allows the oscillator parameters to be easily determined for any given set of
amplitude constraints.
Two cases deserve special attention: one when the attachment location and the node location

coincide, and one in which there is only one oscillator and one node. The former case results in
having to satisfy only S equations, and the latter case leads to closed-form expressions for the
required mass parameter and its vibration amplitude, m and %z; respectively.

2.2. Collocated

Consider the special case where the attachment and the node locations coincide. For this case,
the oscillators and the nodes are said to be collocated. From Eq. (3), note that if

kr ¼ mro2; r ¼ 1;y;S; ð16Þ

then

½R�T %
%
Z ¼

%
0: ð17Þ

Because the oscillators and the node locations are collocated, xr
a ¼ xr

n; in which case the rth row of
Eq. (17) yields

�krf
Tðxr

aÞ%
%
Z ¼ �krf

Tðxr
nÞ%
%
Z ¼ 0; r ¼ 1;y;S ð18Þ

which is clearly identical to Eq. (11) and implies that nodes will be induced at the attachment
locations. Eq. (16) reveals that there is an infinite number of spring–mass combinations that will
induce nodes at xr

a; as long as Eq. (16) is satisfied. In this case, the tolerable vibration amplitudes
of the oscillator masses will dictate the actual spring–mass parameters that are needed to impose
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nodes at xr
n; for r ¼ 1;y;S: Thus, instead of solving the 2S equations for the 2S unknowns kr and

mr; only j%
%
zj ¼ z

%
z%
%
zmax (which consists of S equations) needs to be solved for either the kr or mr;

because Eq. (16) immediately satisfies the node location constraints.

2.3. One oscillator and one node

When only one node location at xn is specified, and it does not coincide with the attachment
location at xa (for this case, the attachment and node locations are said to be not collocated or non-
collocated), the desired spring–mass parameters can be readily obtained. For S ¼ 1; Eq. (13)
simplifies to

fTðxnÞ ½Kd � þ
kmo2

mo2 � k
fðxaÞf

TðxaÞ � o2½Md �
� 	�1

Ffðxf Þ ¼ 0: ð19Þ

Because the second term of Eq. (19) consists of a matrix modified by a rank one matrix, its
inverse can be obtained by applying the Sherman–Morrison formula [11]. Assuming the
excitation frequency o; the oscillator stiffness parameter k; the attachment location xa; the node
location xn; and the excitation location xf are all specified, a closed-form expression for the
required m in order to impose a node at xf can be obtained as follows (see Ref. [10] for detailed
derivations):

m ¼
c1k

o2ðc1 þ c1c3k � c2kÞ
; ð20Þ

where

c1 ¼
XN

i¼1

fiðxnÞfiðxf Þ
Ki � Mio2

; ð21Þ

c2 ¼
XN

i¼1

XN

j¼1

fiðxaÞfjðxaÞfiðxnÞfjðxf Þ

ðKi � Mio2ÞðKj � Mjo2Þ
ð22Þ

and

c3 ¼
XN

i¼1

f2
i ðxaÞ

Ki � Mio2
: ð23Þ

Similarly, for S ¼ 1; Eq. (15) simplifies to

%z ¼
k

k � mo2
fTðxaÞ ½Kd � þ

kmo2

mo2 � k
fðxaÞf

TðxaÞ � o2½Md �
� 	�1

Ffðxf Þ: ð24Þ

Expanding the triple product of Eq. (24) gives

%z ¼ F c01 �
a

1þ c3a
c02


 �
; ð25Þ
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where

c01 ¼
k

k � mo2

XN

i¼1

fiðxaÞfiðxf Þ
Ki � Mio2

; ð26Þ

c02 ¼
k

k � mo2

XN

i¼1

XN

j¼1

f2
i ðxaÞfjðxaÞfjðxf Þ

ðKi � Mio2ÞðKj � Mjo2Þ
: ð27Þ

After some lengthy algebra, a closed-form expression for %z is obtained as

%z ¼
�kF

mo2 � k þ c3kmo2

XN

i¼1

fiðxaÞfiðxf Þ
Ki � Mio2

: ð28Þ

Substituting Eq. (20) into j%zj ¼ %zmax (the absolute value of Eq. (28)) yields an equation in the
unknown parameter k; which can then be solved for the required stiffness value in order to induce
a node at xn: Moreover, for the solution to be physically meaningful, both k and m must
be positive. Mathematically, if Eq. (20) and j%zj ¼ zmax lead to a mass value or a stiffness value that
is negative, then a node cannot be enforced at the desired location for the given set of o; xa and xf :
In this case, the attachment location, xa; can be varied until physically meaningful, i.e. positive,
values of m and k are obtained so that a node can be induced at xn for the given xf and o:
For this one oscillator and one node case, the required mass in order to induce a node and its

vibration amplitude are inversely related. Manipulating Eq. (20) for k yields

k ¼
mo2c1

c1 � mo2c1c3 þ mo2c2
: ð29Þ

Substituting Eq. (29) into Eq. (28), the product of the required mass and its vibration amplitude is
found to be given by

%zm ¼ �
F

o2

c1

c2

XN

i¼1

fiðxaÞfiðxf Þ
Ki � Mio2

ð30Þ

which is independent of k; the oscillator stiffness. For a given xa; xn; xf and o; the right-hand side
of Eq. (30) is a constant. This implies that a small vibration amplitude for the oscillator mass
requires a large mass and vice versa, consistent with physical intuition. For this case, once %zm is
evaluated, Eqs. (30) and (29) can be used to solve for the required m and k for any %zmax directly
without resorting to fsolve.
Consider now the special case where xn ¼ xa (collocated). For S ¼ 1 and for

k ¼ mo2; ð31Þ

Eq. (18) shows that a node will be induced at the attachment location, and an infinite number of
spring–mass combinations can be used to enforce a node at xa: In practice, however, the mass
amplitude constitutes an additional design constraint that must be met. Interestingly, the result of
Eq. (31) can also be obtained by solving Eq. (20) directly. When xn ¼ xa; then c1c3 ¼ c2 and
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Eq. (20) reduces to Eq. (31). Finally, for the same case, Eq. (30) reduces to

%zm ¼ �
F

o2

c1

c3
ð32Þ

whose right-hand side remains a constant for a specified xa; xf and o:

3. Results

Because the assumed-modes method was used to formulate the equations of motion, the
proposed procedures can be easily extended to impose a single node or multiple nodes for any
arbitrarily supported elastic structure during harmonic excitations. Without any loss of generality,
a simply supported and a fixed–free uniform Euler–Bernoulli beam will be considered.
For a uniform simply supported Euler–Bernoulli beam, its normalized (with respect to the mass

per unit length, r; of the beam) eigenfunctions are given by

fiðxÞ ¼

ffiffiffiffiffiffi
2

rL

s
sin

ipx

L
ð33Þ

such that the generalized masses and stiffnesses of the beam become

Mi ¼ 1 and Ki ¼ ðipÞ4EI=ðrL4Þ; ð34Þ

where E is the Young’s modulus, I is the area moment of inertia of the cross-section of the beam.
For a uniform fixed–free Euler–Bernoulli beam, its normalized eigenfunctions are

fiðxÞ ¼
1ffiffiffiffiffiffi
rL

p cos bix � cosh bix þ
sin biL � sinh biL

cos biL þ cosh biL
ðsin bix � sinh bixÞ


 �
ð35Þ

such that the generalized masses and stiffnesses of the beam are

Mi ¼ 1 and Ki ¼ ðbiLÞ
4EI=ðrL4Þ; ð36Þ

where biL satisfies the following transcendental equation:

cos biL cosh biL ¼ �1: ð37Þ

To illustrate the proposed approach of imposing a single node or multiple nodes during
harmonic excitations, cases where the node and attachment locations are collocated and cases
where they are not collocated will be thoroughly analyzed. In general, the number of modes N

used in the expansion depends on the excitation frequency. For the range of excitation frequencies
considered in the subsequent numerical examples, N ¼ 15 to ensure the convergence of all the
numerical results. In addition, the MATLAB routine fsolve will be used to find the required mass
and stiffness parameters that induce nodes at the desired locations and that satisfy the constraints
on the vibration amplitude of the masses.

3.1. Oscillators and node locations are collocated

Consider a uniform simply supported Euler–Bernoulli beam of length L: For a given
application, a node is desired at xn ¼ 0:35L; for a concentrated harmonic force of amplitude F ; an
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excitation frequency of o ¼ 47
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
and an excitation location of xf ¼ 0:77L: Fig. 2 shows

the steady state lateral displacement of the beam. The solid curve corresponds to the deformed
shape of the beam with an oscillator attached at xa ¼ 0:35L; whose spring–mass parameters
satisfy k ¼ mo2: The dotted line corresponds to the deformed shape of the beam with no
oscillator, and the horizontal line represents the configuration of the undeformed beam. Note that
by attaching an oscillator with a properly chosen set of system parameters, its attachment
location, in this case xa ¼ 0:35L; becomes a node, as long as k ¼ mo2: Physically, this implies an
infinite number of spring–mass combinations can be used to meet the design objective of inducing
a node at xa: In practice, the vibration amplitude of the oscillator mass, %zmax; constitutes an
important constraint that must be satisfied. Fig. 3 is a design plot that shows %zmax=ðFL3=ðEIÞÞ as a
function of m=ðrLÞ: Knowing the allowable %zmax; the oscillator mass can then be properly chosen,
which in turn dictates the required stiffness value, k: For example, suppose the physical constraint
of the system requires that %zmaxp0:1FL3=ðEIÞ: Then from Fig. 3, the oscillator mass must be
chosen such that mX3:2452� 10�3rL: The results of Fig. 3 are also consistent with Eq. (32). For
xa ¼ 0:35L; xf ¼ 0:77L and o ¼ 47

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; Eq. (32) predicts m%zmax ¼ 3:2452�

10�4FrL4=ðEIÞ; numerically, the product of the required mass m (obtained by using fsolve) for
any specified %zmax is also found to be m%zmax ¼ 3:2452� 10�4FrL4=ðEIÞ:
As long as k ¼ mo2; a node will be induced at the attachment location. However, the actual

choice of the oscillator parameters will affect the natural frequencies of the system, and the
vibration amplitude of the oscillator mass. Table 1 shows the first six natural frequencies of two
combined structures, each of which consists of a simply supported beam carrying an oscillator at
xa ¼ 0:35L: For the first system, the oscillator parameters are m ¼ 0:01rL; k ¼ 2:2090�
101EI=L3; and for the second system they are m ¼ 0:002rL; k ¼ 4:4180EI=L3:Note that both sets
of oscillator parameters satisfy k ¼ mo2; where o ¼ 47

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
: Thus, while both systems will

exhibit the same deflection shape of Fig. 2 when forced harmonically at 0:77L with an excitation
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Fig. 2. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with (solid line) and

without (dotted line) an oscillator attachment. The horizontal line represents the configuration of the undeformed

beam. The system parameters are o ¼ 47
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 0:77L and xa ¼ 0:35L: The attachment and node locations

are collocated.
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frequency of o; they will have different natural frequencies (see Table 1). Moreover, for the first
system, ð%zmaxÞ1 ¼ 3:2452� 10�2FL3=ðEIÞ; and for the second system, ð%zmaxÞ2 ¼ 1:6226�
10�1FL3=ðEIÞ:
Consider now a uniform cantilever beam. It is desired that two nodes be imposed, at x1

n ¼ 0:3L
and x2

n ¼ 0:6L; for a localized harmonic force applied at xf ¼ 0:87L; with a forcing amplitude of
F ; and an excitation frequency of o ¼ 57

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
: Fig. 4 illustrates the steady state deformed

shape of the beam. Note that by attaching two properly tuned oscillators, with parameters
kr ¼ mro2; at x1

a ¼ 0:3L and x2
a ¼ 0:6L; nodes are induced at these locations, which consequently

leads to very little vibration in the region between 0 and 0:6L: The selection of kr and mr is not
unique, and the eventual choice is generally governed by the tolerable vibration amplitudes of the
masses. Fig. 5 shows the design plots of ð%zmaxÞi=ðFL3=ðEIÞÞ as a function of mi=ðrLÞ; where the
solid and dotted lines correspond to ð%zmaxÞ1 and ð%zmaxÞ2; respectively. Interestingly, numerical
experiments show that like the collocated, one oscillator and one node case, the product of mi and
ð%zmaxÞi is also a constant. For the given x1

a; x2
a; xf and o; ðm%zmaxÞ1 ¼ 2:6855� 10�5FrL4=ðEIÞ and
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Table 1

The first six natural frequencies of a uniform simply supported beam carrying one oscillator at xa ¼ 0:35L

Natural frequency System 1 System 2

o1 0.97886E+01 0.98533E+01

o2 0.38731E+02 0.39309E+01

o3 0.48238E+02 0.47268E+02

o4 0.88835E+02 0.88828E+02

o5 0.15805E+03 0.15794E+03

o6 0.24679E+03 0.24675E+03

For the first system, ðm; kÞ ¼ ð0:01rL; 22:090EI=L3Þ; and for the second system, ðm; kÞ ¼ ð0:002rL; 4:418EI=L3Þ: The
natural frequencies are all non-dimensionalized by dividing by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
:

Fig. 3. The design plot of %zmax=ðFL3=ðEIÞÞ as a function of m=ðrLÞ; for the system parameters of Fig. 2.

P.D. Cha / Journal of Sound and Vibration 279 (2005) 799–816808



ðm%zmaxÞ2 ¼ 4:3011� 10�6FrL4=ðEIÞ: Depending on the allowable vibration amplitudes, a unique
set of masses can be selected, which in turn dictates the required stiffnesses, since kr ¼ mro2:

3.2. Oscillators and node locations are not collocated

Consider a uniform cantilever beam, with a concentrated harmonic force of excitation
frequency o ¼ 3:9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
applied at xf ¼ 1:0L: For a given application, it is desired to have a

node at xn ¼ 0:68L: However, due to space constraint, an oscillator cannot be attached at that
location but at some other point, say xa ¼ 0:44L: In this case, Eqs. (20)–(23) can be used, in
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Fig. 5. The design plot of ð%zmaxÞi=ðFL3=ðEIÞÞ as a function of mi=ðrLÞ; for the system parameters of Fig. 4. The solid

and dotted lines correspond to ð%zmaxÞ1=ðFL3=ðEIÞÞ and ð%zmaxÞ2=ðFL3=ðEIÞÞ; respectively.

Fig. 4. The steady state deformed shapes of a uniform cantilever Euler–Bernoulli beam with (solid line) and without

(dotted line) oscillator attachments. The system parameters are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 0:87L; x1

a ¼ 0:3L and x2
a ¼

0:6L: The oscillator parameters, m and k; satisfy k ¼ mo2: The attachment and node locations are collocated.
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conjunction with the tolerable vibration amplitude of the oscillator mass, to obtain the required
spring–mass parameters in order to induce a node. Numerical experiments showed that the
deformed shape depends only on xa; xn; xf and o; as long the k and m satisfy Eq. (20).
Alternatively, the tolerable vibration amplitude, %zmax; affects only m and k; but does not alter the
deformation of the beam. Fig. 6 shows the deformed shape of the uniform cantilever beam
carrying an oscillator whose parameters satisfy Eq. (20), for the above set of xa; xn; xf and o: The
excitation frequency is near the first natural frequency of a uniform cantilever beam, and the
deformed shape of the combined structure resembles the first mode shape of a cantilever beam and
is given by the dotted line. Note that deformed shape of the beam carrying the oscillator has a
node at exactly 0:68L as desired, and the rest of the beam remains practically stationary compared
to the cantilever beam with no oscillator. Fig. 7 is the design plot that shows %zmax=ðFL3=ðEIÞÞ
versus m=ðrLÞ: Knowing the tolerable vibration amplitude of the oscillator mass, its mass can be
readily selected from Fig. 7. Like the collocated case, the product of m and %zmax can be shown
analytically (see Eq. (30)) and verified numerically to be a constant. For the chosen set of system
parameters, m%zmax ¼ 2:4517� 10�1FrL4=ðEIÞ: The solid line of Fig. 8 shows the required mass as
a function of a given spring stiffness, and the dotted line corresponds to m ¼ k=o2: Note that for
small k’s, the required mass and the corresponding stiffness is related approximately by mEk=o2:
This result will be used later to provide the initial guesses when calling fsolve:
Consider now a simply supported beam, with a concentrated harmonic force applied at xf ¼

0:77L and a forcing frequency of o ¼ 47
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
: A node is desired at xn ¼ 0:28L; and the

attachment location is at xa ¼ 0:64L: Again, Eqs. (20)–(23) are used, in conjunction with the
vibration amplitude constraint of the oscillator mass, to obtain the required spring–mass
parameters in order to induce a node. Fig. 9 shows the deformed shape of the uniform simply
supported beam carrying an oscillator whose parameters satisfy Eq. (20), for the specified xa; xn;
xf and o: Note that deformed shape of the beam carrying the oscillator has a node at exactly
0:28L; and the region between 0 and 0:30L experiences substantially less vibration comparing to
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Fig. 6. The steady state deformed shapes of a uniform cantilever Euler–Bernoulli beam with (solid line) and without

(dotted line) an oscillator attachment. The system parameters are o ¼ 3:9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 1:0L; xa ¼ 0:44L; and

xn ¼ 0:68L: The oscillator parameters, m and k; are arbitrary but they satisfy Eq. (20). The attachment and node

locations are not collocated.
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the beam with no oscillator. Fig. 10 is the design plot that shows %zmax=ðFL3=ðEIÞÞ versus m=ðrLÞ;
which can be used to select the required mass in order to meet the constraint of a specified
oscillator vibration amplitude. For the given set of system parameters, m%zmax ¼ 7:4739�
10�4FrL4=ðEIÞ: The solid line of Fig. 11 shows the required mass as a function of a given spring
stiffness, and the dotted line corresponds to m ¼ k=o2: Note again that for small k’s, the required
mass and the corresponding stiffness is related approximately by mEk=o2:
For the multiple nodes, non-collocated case, the required oscillator parameters, the mi and ki;

can be obtained by solving a total of 2S non-linear algebraic equations simultaneously, given by
Eq. (13) and j%zj ¼ %zmax (see Eq. (15)). Numerically, the MATLAB routine fsolve can be used to
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Fig. 8. The required mass, m=ðrLÞ; as a function of a given spring stiffness, k=ðEI=L3Þ; for the system parameters of

Fig. 6.

Fig. 7. The design plot of %zmax=ðFL3=ðEIÞÞ as a function of m=ðrLÞ; for the system parameters of Fig. 6.
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find the roots of these equations. However, numerical experiments showed that fsolve is highly
sensitive to the set of initial guesses. Thus, unless an estimation of the solutions can be first
established, convergence to the actual solution can be quite slow, and this direct approach of
finding the required mi and ki can be computationally taxing. Fortunately, numerical experiments
also showed that the deformed shape of the beam depends only on xi

a; xi
n; xf and o; as long as the

mi and ki satisfy Eq. (13). Moreover, like the previous cases, the product mið%zmaxÞi is also a
function of xi

a; xi
n; xf and o only, and is independent of the ki: Based on the above observations,
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Fig. 10. The design plot of %zmax=ðFL3=ðEIÞÞ as a function of m=ðrLÞ; for the system parameters of Fig. 9.

Fig. 9. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with (solid line) and

without (dotted line) an oscillator attachment. The system parameters are o ¼ 47
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 0:77L; xa ¼ 0:64L;

and xn ¼ 0:28L: The oscillator parameters, m and k; are arbitrary but they satisfy Eq. (20). The attachment and node

locations are not collocated.

P.D. Cha / Journal of Sound and Vibration 279 (2005) 799–816812



for a non-collocated case, the following procedure can be used to induce nodes at xi
n for a given

set of o; xi
a and xf ; subjected to the constraints of j%zj ¼ %zmax:

1. Assume xi
a; xi

n; xf and o are specified. For any set of arbitrarily chosen k�i ; solve Eq. (13) using
fsolve for the required m�

i such that xi
n are nodes. To expedite convergence, use k�i =o

2 as the
initial guesses for the required masses.

2. For the given xi
a; xi

n; xf ; o; k�i and m�
i ; compute the mass deflections, %z

�
i ; using Eq. (15).

3. Determine the product of jm�
i %z
�
i j ¼ m�

i ð%z
�
maxÞi; where ð%z�maxÞi denotes the maximum vibration

amplitude of the ith oscillator.
4. Because m�

i ð%z
�
maxÞi ¼ mið%zmaxÞi ¼ constant; knowing the desired ð%zmaxÞi (based on physical

constraints), the required mi can be readily determined.
5. Having found the required mi in order to satisfy the maximum deflection constraints, the
required ki can be found by solving Eq. (13) using fsolve to satisfy the location of nodes
constraints. To expedite convergence, use mio2 as the initial guesses for the required stiffnesses.

6. Finally, for the solution to be physically meaningful, both mi and ki must be positive. If any of
these physical parameters turn out to be negative, this implies that nodes cannot be induced at
xi

n for the specified xi
a; xf and o: In this case, the attachment locations, xi

a; can be varied, and
the proposed procedure repeated until physically realizable quantities of mi and ki are obtained.

For a given set of xi
a; xi

n; xf ; o and specified ð%zmaxÞi; the required masses mi are found algebraically
once the product of the ith mass and its maximum vibration amplitude is known. Thus, the
proposed procedure requires only solving Eq. (13) for the unknown ki instead of the solving
Eqs. (13) and (15) ðj%zj ¼ %zmaxÞ simultaneously for the unknown mi and ki; effectively reducing the
number of non-linear algebraic equations that need to be solved by half. Moreover, once the mi

are known, the initial guesses for the ki (required for fsolve) are simply mio2: Hence, the proposed
procedure of determining the mi and ki offers substantial computational savings over the direct
approach of solving a set of 2S non-linear algebraic equations.
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Fig. 11. The required mass, m=ðrLÞ; as a function of a given spring stiffness, k=ðEI=L3Þ; for the system parameters of

Fig. 9.
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Fig. 12 shows the steady state deformed shape of a uniform cantilever beam excited
harmonically at xf ¼ 1:0L with o ¼ 65

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
: Nodes are desired at 0:8L and 1:0L; and

oscillators are attached at x1
a ¼ 0:55L and x2

a ¼ 0:83L: Arbitrarily choosing k�1 ¼ 40EI=L3 and
k�2 ¼ 25EI=L3; the initial guesses for the m�

i are then k�1 =o
2 and k�2 =o

2: Solving Eq. (13) using
fsolve (with the aforementioned initial guesses) returns m�

1 ¼ 9:4213� 10�3rL and m�
2 ¼ 5:9026�

10�3rL: For this set of oscillator parameters, m�
1 ð%z

�
maxÞ1 ¼ 1:1008� 10�3FrL4=ðEIÞ; and

m�
2 ð%z

�
maxÞ2 ¼ 6:6870� 10�4FrL4=ðEIÞ: Knowing the product of m�

i ð%z
�
maxÞi; the previously

mentioned algorithm can be used to find the desired mi and ki that satisfy the tolerable vibration
amplitude of the oscillator masses. Table 2 shows the maximum vibration amplitudes of the
oscillator masses, along with the required mi and ki: In all the cases considered, the beam
deflection shape is identical to that of Fig. 12. In addition, note that mið%zmaxÞi remains unchanged
for any choice of ki as long as mi and ki satisfy Eq. (13). Moreover, observe that the ki and mi are
related approximately by kiEmio2; justifying the earlier statement that mio2 can be used as initial
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Table 2

Combinations of mi and ki that satisfy the specified dimensionless vibration amplitudes of the oscillator masses,

ð%z0maxÞi ¼ ð%zmaxÞi=ðFL3=ðEIÞÞ; for the case of o ¼ 65
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 1:0L; x1

a ¼ 0:55L; x2
a ¼ 0:83L; x1

n ¼ 0:8L and

x2
n ¼ 1:0L

ð%z0maxÞ1 ð%z0maxÞ2 m1=ðrLÞ m2=ðrLÞ k1=ðEI=L3Þ k2=ðEI=L3Þ

0.01 0.01 1:1008� 10�1 6:6870� 10�2 4:9321� 102 2:9064� 102

0.15 0.08 7:3389� 10�3 8:3587� 10�3 3:1125� 101 3:5439� 101

0.23 0.19 4:7862� 10�3 3:5195� 10�3 2:0272� 101 1:4892� 101

0.09 0.31 1:2231� 10�2 2:1571� 10�3 5:2007� 101 9:1219� 100

0.18 0.46 6:1157� 10�3 1:4537� 10�3 2:5921� 101 6:1456� 100

Fig. 12. The steady state deformed shapes of a uniform cantilever Euler–Bernoulli beam with (solid line) and without

(dotted line) oscillator attachments. The system parameters are o ¼ 65
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 1:0L; x1

a ¼ 0:55L; x2
a ¼ 0:83L;

x1
n ¼ 0:8L; x2

n ¼ 1:0L: The oscillator parameters, m and k; are arbitrary but they satisfy Eq. (13). The attachment and
node locations are not collocated.
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guesses when solving for ki using fsolve: Note that for all the combinations of system
parameters, the displacements at 0:8L and 1:0L indeed become zero, leading to very little
vibration of the beam between those two points, even though the localized force is applied
at xf ¼ 1:0L:
The number of nodes that are eventually induced depends on the excitation frequency. For the

example of Fig. 12, while only two node locations are specified, a third node also appears at
approximately 0:52L: Dowell [12] noted that if a spring–mass system is attached to another
system, the natural frequencies that were originally higher than the spring–mass natural frequency
are increased, those that were originally lower are decreased, and a new natural frequency appears
between the original pair of frequencies nearest the oscillator natural frequency. Table 3 shows the
first six natural frequencies of a uniform cantilever beam and a uniform cantilever beam carrying
two oscillators, attached at x1

a ¼ 0:55L and x2
a ¼ 0:83L; with parameters ðm1; k1Þ ¼ ð1:1008�

10�1rL; 4:9321� 102EI=L3Þ and ðm2; k2Þ ¼ ð6:6870� 10�2rL; 2:9064� 102EI=L3Þ respectively.
For the set of spring–mass parameters chosen, two natural frequencies appear between the third
and fourth natural frequencies of a uniform cantilever beam. Note that the excitation frequency
o ¼ 65

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
is near the fourth natural frequency of the combined system, and

consequently, a total of three nodes will be induced, but only the nodes at x1
n ¼ 0:8L and x2

n ¼
1:0L are imposed as design constraints.
A simple approach has been developed to solve the inverse problem of imposing nodes at

multiple locations along any arbitrarily supported elastic structure that is subjected to a localized
harmonic excitation, under the constraints of maximum allowable absorber amplitudes. The
desired node locations and the vibration amplitudes of the oscillator masses give rise to a total of
2S equations that must be solved simultaneously. Using the proposed procedure, only S non-
linear algebraic equations need to be solved. In addition, a guideline is provided for the selection
of the initial guesses that are required when using fsolve: The ability to induce nodes has practical
benefits because it allows certain points along the structure to remain stationary without using any
rigid supports, and it enables certain regions of the structure to undergo very small deflections,
thereby suppressing vibration in those sections.
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Table 3

The first six natural frequencies of a uniform cantilever beam (system 1) and a uniform cantilever beam carrying two

oscillators at x1
a ¼ 0:55L and x2

a ¼ 0:83L (system 2)

Natural frequency System 1 System 2

o1 0.35160E+01 0.31730E+01

o2 0.22035E+02 0.19898E+02

o3 0.61697E+02 0.59184E+02

o4 0.12090E+03 0.67382E+02

o5 0.19986E+03 0.77932E+03

o6 0.29856E+03 0.12698E+03

The sprung masses attached at x1
a and x2

a have the following parameters respectively: ðm1; k1Þ ¼ ð1:1008�
10�1rL; 4:9321� 102EI=L3Þ and ðm2; k2Þ ¼ ð6:6870� 10�2rL; 2:9064� 102EI=L3Þ: The natural frequencies are all

non-dimensionalized by dividing by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
:
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4. Conclusions

Elastically mounted masses are used as a means to impose a single or multiple nodes on any
elastic structure during harmonic excitations. The vibration amplitudes of these masses are
imposed as constraints to make the solution scheme more practical. When the parameters of the
sprung masses are properly chosen, nodes can always be induced at the attachment locations for
any excitation frequency and excitation location. When the attachment and the node locations are
not collocated, it is only possible to induce a node or multiple nodes at certain locations along the
structure. In addition, if the node locations are properly selected, a region of nearly zero
amplitudes can be imposed along the elastic structure for a given localized harmonic force without
using any rigid supports, effectively quenching vibration in that segment of the structure. A
detailed procedure to assist in the selection of the attached spring–mass systems, subjected to the
constraints of tolerable vibration amplitudes of the oscillators, was outlined, and numerical
experiments were performed to validate the utility of the proposed scheme of imposing a single or
multiple nodes during harmonic excitations for the collocated and non-collocated cases.
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